An Additive Neumann-Neumann Method for Mortar Finite Element for 4th Order Problems
نویسنده
چکیده
In this paper, we present an additive Neumann-Neumann type parallel method for solving the system of algebraic equations arising from the mortar finite element discretization of a plate problem on a nonconforming mesh. Locally, we use a conforming Hsieh-CloughTocher macro element in the subdomains. The proposed method is almost optimal i.e. the condition number of the preconditioned problem grows poly-logarithmically with respect to the parametes of the local triangulations.
منابع مشابه
Neumann–neumann Algorithms for a Mortar Crouzeix–raviart Element for 2nd Order Elliptic Problems
The paper proposes two scalable variants of the Neumann–Neumann algorithm for the lowest order Crouzeix–Raviart finite element or the nonconforming P1 finite element on nonmatching meshes. The overall discretization is done using a mortar technique which is based on the application of an approximate matching condition for the discrete functions, requiring function values only at the mesh interf...
متن کاملA balancing Neumann-Neumann method for a mortar finite element discretization of a fourth order elliptic problem
In the paper a balanced Neumann Neumann algorithm for the reduced HCT finite element nonmatching meshes is discussed. The overall discretization is done using a mortar technique which is based on the application of an approximate matching condition for the discrete functions. The algorithms are analyzed using the abstract Schwarz framework, proving an almost optimal condition bound which is ind...
متن کاملBalancing domain decomposition for mortar mixed finite element methods
The balancing domain decomposition method for mixed finite elements by Cowsar, Mandel, and Wheeler is extended to the case of mortar mixed finite elements on non-matching multiblock grids. The algorithm involves an iterative solution of a mortar interface problem with one local Dirichlet solve and one local Neumann solve per subdomain on each iteration. A coarse solve is used to guarantee that ...
متن کاملDamage identification of structures using second-order approximation of Neumann series expansion
In this paper, a novel approach proposed for structural damage detection from limited number of sensors using extreme learning machine (ELM). As the number of sensors used to measure modal data is normally limited and usually are less than the number of DOFs in the finite element model, the model reduction approach should be used to match with incomplete measured mode shapes. The second-order a...
متن کاملA Boundary Meshless Method for Neumann Problem
Boundary integral equations (BIE) are reformulations of boundary value problems for partial differential equations. There is a plethora of research on numerical methods for all types of these equations such as solving by discretization which includes numerical integration. In this paper, the Neumann problem is reformulated to a BIE, and then moving least squares as a meshless method is describe...
متن کامل